

BIO-COMMODITY REFINING

Michael J. O'DONOHUE

Scientific and deputy division manager

▼ The coordinator

Michael O'DONOHUE INRA

♦ THE BIOCORE PROJECT

A QUICK OVERVIEW

The consortium

- 25 Partners
- **13** Countries
- 5 SMEs
- 4 MNI
- 2000 person-months

Project cost

- Full budget €20 274 484
- EU contribution €13 920238

Biomass supply

Biomass fractionation and refining

Biotech solutions

Chemical conversions and formulation

Pilot testing

Process design

Integrated Sustainability analysis

Coordination and management

Dissemination, training and technology transfer

Three taskforces

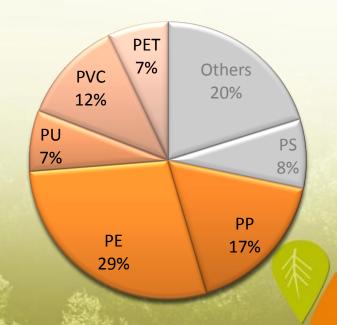
Data collection and experimentation

Modeling, analysis and process optimization

Project management and knowledge transfer

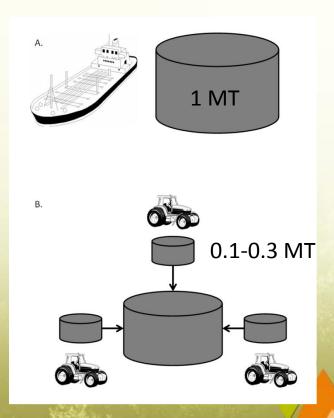
KEY MESSAGES ABOUT BIOCORE

- BIOCORE is a concept for advanced generation biorefining
 - Raw material = lignocellulosic biomass
 - Multi-feedstock approach to ensure stable supply chain and provide multiple implementation options
 - Product portfolio= fuel, chemicals, materials, food/feed
 - A multi-product approach to ensure economic viability and optimal use of biomass components



biomass is carbon

- Generic chemical formula of biomass
 - ♦ CH_{1.5}O_{0.66}
- Modern society is depends on carbon-based chemicals. A few of these dominate the market
 - Ethylene (approx 140 Mt)
 - Propylene
 - **BTX**
- **▼** Today's polymers are extremely reliant on carbon
 - Biorefining must provide solutions for polymers
 - Slot-in building block substitutes
 - New polymers


BIOCORE and EU polymer market

MALL IS BEAUTIFUL?

- **Proof:** Biorefineries should be a source of renewal for rural areas
 - Regional approach with small/medium scale biorefineries perhaps linked to centralized facilities
 - Links to existing industrial activities (e.g. sugar refineries and paper mills)
 - Biorefining should be a new driver for agriculture

BIOCORE'S UPFRONT FRACTIONATION TECHNOLOGY

CIMV Organosolv

- Uses a formic : acetic acid solvant system (generation of peracids)
 - Dissolves lignin and hemicelluloses
- Multi-biomass
- ♦ 100 kg/h biomass capacity
- In operation since 2006
 - >60 runs completed

THREE PLATFORM INTERMEDIATES

Cellulose and glucose

Pentose sugars

Lignins

OUNTERSION TECHNOLOGIES

- Biotechnology
 - Enzyme and strain (bacteria and yeast) development
 - Alcohols
 - Olefins
 - Organic acids
 - Polyols
 - XOS
 - Alkyl polyglycosides

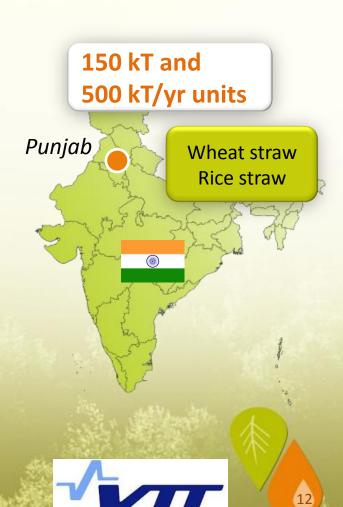
- Chemistry
 - Heterogeneous catalysis, pyrolysis and polymer formulation
 - Olefins
 - Polyols
 - Furfural derivatives
 - Hydrogels
 - Polyurethanes
 - PVC

♦ MAKING IT WORK.....EVERYWHERE

- Account for the many issues that will form the framework of biorefinery implementation
 - Environment?
 - Plant, animal and microbial biodiversity
 - Landscape
 - Soil quality
 - 6 Economy
 - Employment
 - New markets and products
 - Society
 - Rural development
 - New policy

MAIN ACHIEVEMENTS

Cameo highlights of the project's progress



CASE STUDIES LOCALIZED

- Europe can readily supply 35 Mt per year of ag-residues
 - 17.5 Mt in just 3 countries: FR, DE, GB
 - India can furnish at least 100 Mt of rice straw
- Harvestable hardwood is available in 5 countries
 - ♦ 2.5-5.5 Mt in DE, FR, PL, RO and I
- Central and eastern Europe will be best for SRC Poplar production

150 kT/yr units

NDIAN CASE STUDY

Wheat straw

(Kt)

52

180

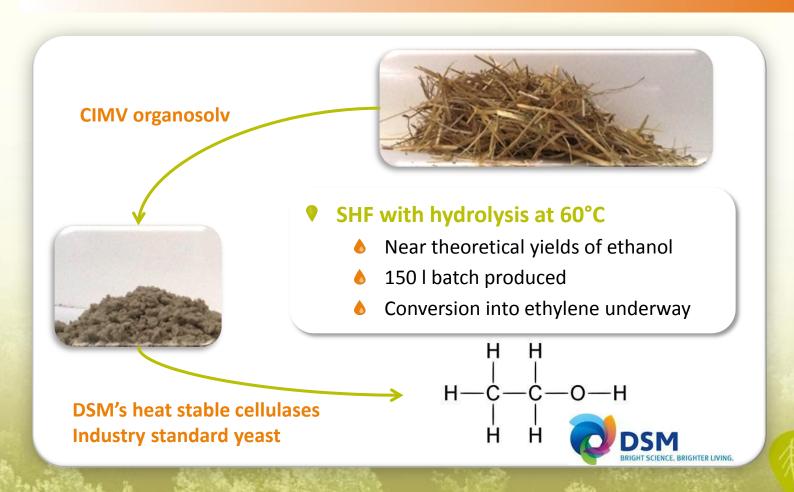
An informationally-rich encounter

- SAB composed of a representative cross section of Indian society and industry
 - Local government
 - Entrepreneurs
 - ONGs
 - Academics

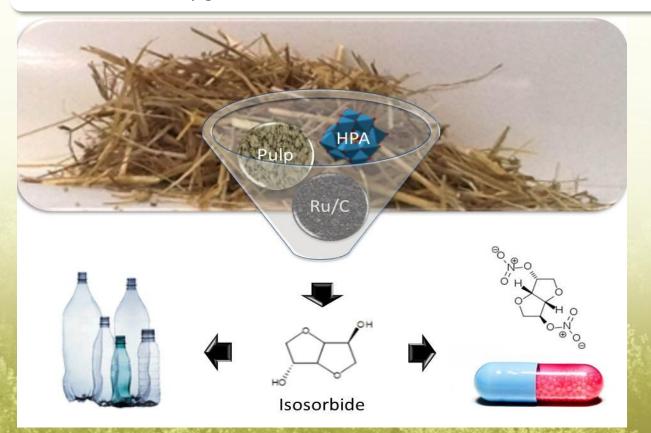
▼ The case study regions

- Good level of agriculture
- Good road network
- Competition with paper pulping
- Small farms (1-2 ha)
- Difficulties to extract and store rice straw
- Increasing needs for animal feed

28-30 November 2011

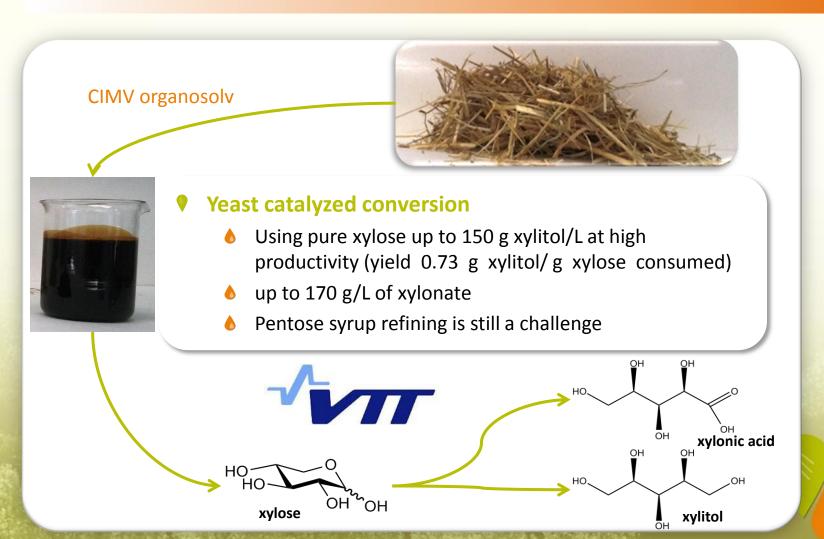

TOWARDS MULTI-FEEDSTOCK REFINING

- CIMV organosolv processing can handle several feedstocks
 - Rice straw no process alterations
 - Birchwood and SRC poplar modification of the residence time and formate:acetate ratio
 - Feasible at industrial scale using a batch mode or by deploying two process lines
 - Bark is not a problem with SRC poplar
 - Hardwood/softwood (90:10) mixture can be processed
 - A promising innovation that will allow the processing of softwood has been identified


PRODUCTION OF BIOETHANOL: TOWARDS 2G PVC

♦ DIRECT CATALYTIC CONVERSION OF STRAW CELLULOSE INTO POLYOLS

- One pot synthesis of isosorbide using a tri-functional catalyst
 - Productivity g.L⁻¹.h⁻¹ at lab scale



BIOTECH PRODUCTION OF XYLITOL AND XYLONATE

DEVELOPMENT OF LIGNIN-BASED POLYMERS

- **▼** Lignin reinforcement of thermoplastic elastomer
 - Simple fabrication method
 - Increased tensile strength and toughness, with surface hardness being significantly increased
 - Application for electrical appliances (e.g. cables)

DEVELOPMENT OF LIGNIN-BASED POLYMERS

- Replacement of phenol by lignin in phenolic resins suitable for wood based panels
 - Easy preparation method
 - Resins with performance that meet the relative European standards
 - Resins with lower cost

NEW GLUCOSE-BASED PLASTICIZER

♦ Alternative to di-2-ethylhexyl phthalate (DEHP)

- ♦ DEHP renders PVC more flexible, but.......
 - DEHP is linked to health concerns
 - DEHP is petrochemical-based
- At 40 parts per hundred, the bio-based plasticizer makes PVC twice as flexible as di(2-ethylhexyl)phthalate (DEHP)

ONCLUSIONS

BIOCORE

- A concept that addresses a number of grand challenges
- Highly encouraging progress with several highlights after 24 months
- Potential for near-mature industrial technologies in 2014
- An exciting collaboration with India

Acknowledgements to:

- **b** all BIOCORE partners
- the EU Commission for funding

